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Researchers commonly rely on human dental morphological
features in order to reconstruct genetic affinities among past
individuals and populations, particularly since teeth are often the
best preserved part of a human skeleton. Tooth form is considered
to be highly heritable and selectively neutral and, therefore, to be
an excellent proxy for DNA when none is available. However, until
today, it remains poorly understood whether certain dental traits
or trait combinations preserve neutral genomic signatures to a
greater degree than others. Here, we address this long-standing
research gap by systematically testing the utility of 27 common
dental traits and >134 million possible trait combinations in
reflecting neutral genomic variation in a worldwide sample of
modern human populations. Our analyses reveal that not all traits
are equally well-suited for reconstructing population affinities.
Whereas some traits largely reflect neutral variation and therefore
evolved primarily as a result of genetic drift, others can be linked
to nonstochastic processes such as natural selection or hominin
admixture. We also demonstrate that reconstructions of popula-
tion affinity based on many traits are not necessarily more reliable
than those based on only a few traits. Importantly, we find a set of
highly diagnostic trait combinations that preserve neutral genetic
signals best (up to ~xr = 0.580; 95% r range = 0.293 to 0.758; P =
0.001). We propose that these trait combinations should be prior-
itized in future research, as they allow for more accurate infer-
ences about past human population dynamics when using dental
morphology as a proxy for DNA.
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Human dental morphology is highly diverse and varies among
individuals and populations. Teeth are the hardest tissue in

the human body, and as such, their remains are generally well
preserved after death and inhumation, even when associated
skeletal and endogenous DNA preservation is poor. As a result,
dental morphology is widely used for inferring the biogeographical
origin of deceased individuals, particularly when no other bi-
ological markers are available. Typical applications in the study of
dental morphology include ancestry identification of unknown
individuals in forensic cases (1, 2), the assessment of past pop-
ulation structure and history in archaeological contexts (3–9), and
the reconstruction of hominin phylogenies in paleontological
studies (10–12).
Dental morphology is routinely characterized using nonmetric

traits by reference to standardized scoring protocols such as the
Arizona State University Dental Anthropology System (ASU-
DAS) (13, 14). The ASUDAS catalogs a large number of com-
mon crown and root shape variants for the permanent adult
dentition, which have been found to be differentially expressed
across modern human populations and thus useful for pop-
ulation comparisons. Examples of common dental variants in-
clude the number of cusps and roots, the relative size of cusps, or
the pattern of fissures, ridges, and grooves on tooth crowns. It is
widely assumed that ASUDAS tooth variants are highly herita-
ble, selectively neutral, and evolutionarily conservative, and that

human dental diversity worldwide was generated by random
evolutionary processes consisting of founder effects and genetic
drift (15). Indeed, recent research in population and quantitative
genetics has shown that neutral genetic variation and dental
morphological variation across modern human populations is
significantly correlated, as expected under neutrality (16, 17).
Additionally, within-population dental morphological variation
decreases with increasing geographical distance from Africa (18),
a signature also found in neutral genomic datasets as a result of
the demographic expansion of modern humans originating in
Africa (19).
However, it is debated whether certain dental traits preserve

neutral genetic signatures to a greater degree than others
(20–22), and until now, there is no definitive list of key dental
traits that are most useful for adequately capturing neutral ge-
nomic variation (15). As a rule of thumb, researchers therefore
assume that phenotypic analyses based on many dental traits are
more reliable than those based on only a few traits (14, 15). This
assumption, however, has never been formally tested empirically
and might be problematic because reconstructions of human
genetic affinities based on nonneutrally evolving dental traits
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may erroneously reflect mechanisms unrelated to genetic drift,
such as convergent adaptation in response to shared environments.
A promising approach to address these matters is to quantify

the correlation of biological affinity measures across worldwide
modern human populations, derived independently from neutral
genomic markers, on the one hand, and different morphological
regions, on the other hand (23). Such analyses have already been
successfully applied in a range of anthropological studies that
attempted to disentangle the differential neutral genetic signals
preserved in various anatomical parts of the human cranium
(24–28). However, to our knowledge, such approaches have not
yet been applied to the various dental morphological traits of the
ASUDAS. Moreover, whereas previous genotype–phenotype
investigations on cranial elements used predefined functional
and developmental modules, such study design might be sub-
optimal in light of the complex modularity, ontogeny, and in-
heritance of phenotypes in general, and dental traits in particular
(21, 22, 29–32). We therefore propose that testing all possible
combinations of dental traits in preserving neutral genetic signals
is a more promising approach than restricting analyses to only
individual traits or predefined trait combinations.
Here, we address these research gaps by systematically testing

the utility of different dental morphological traits and trait
combinations in reflecting neutral genomic patterns of variation
using an exhaustive search algorithm. To assess the utility of a
given trait or trait combination, we estimated dental phenotypic
distances (DP) between 20 worldwide modern human pop-
ulations, and compared them to neutral genomic distances (DG)
among the same, or closely matched, populations (SI Appendix,
Table S1 and Fig. S1). The congruence between DP and DG was
quantified by linear regression of the off-diagonal values in the
two distance matrices using Pearson’s product-moment correla-
tion coefficient (r). An r value close to 1 indicates that a trait or
trait combination reliably reflects neutral genomic patterns of
variation, whereas an r value close to 0 indicates that a trait or
trait combination is less congruent with neutral expectations. To
account for stochastic variation inherent to a neutral model of
evolution, we calculated r for a given dental trait or trait com-
bination 1,000 times, each time comparing the DP matrix to
different DG matrices randomized by subsampling genomic loci.
We then reported the median of the resulting distribution of r
values as a point estimate and as the utility estimator for a given
trait or trait combination (~xr). To measure the spread of r values
around ~xr, we constructed an interpercentile range accounting for
95% of the distribution of r values. We also calculated P values
by permutation under the null hypothesis of no association be-
tween DP and DG, which permitted us to assess how frequently
the utility estimate ~xr was produced by chance alone. Our analysis
is based on a large microsatellite loci database (33) and the
hitherto largest available ASUDAS dental trait database (15),
enabling us to quantify the utility of 27 dental traits and all
134,217,700 possible combinations of these traits.

Results
Fig. 1 displays the utility of 27 dental morphological traits con-
sidered in the ASUDAS for reconstructing neutral genetic var-
iation across worldwide modern human populations (SI
Appendix, Table S2). We found that the various traits exhibit
disparate levels of utility, with median utility estimates (~xr)
ranging from −0.039 (95% r range = −0.167 to 0.192; P = 0.576)
to 0.108 (95% r range = −0.107 to 0.471; P = 0.129). None of the
~xr utility estimates is statistically significant at α = 0.05. The ~xr
utility estimates are neither correlated with the average fre-
quency of traits across populations (SI Appendix, Fig. S2) nor
with the range of trait frequencies across populations (SI Ap-
pendix, Fig. S3).
The utility results for all 134,217,700 possible combinations of

dental traits are listed in a comprehensive table publicly available

on Zenodo (34) at https://zenodo.org/record/3713179. The dif-
ferent trait combinations yielded vastly disparate ~xr utility estimates
ranging from −0.036 (95% r range = −0.183 to 0.305; P = 0.475) to
0.580 (95% r range = 0.293 to 0.758; P = 0.001). Most of the ~xr
utility estimates (99.4%) are statistically significant at α = 0.05.
To survey which dental trait combinations were more useful

and which ones were less informative, we plotted the pro-
portional composition of traits involved in trait combinations
yielding different ~xr utility estimates. For this, we first appor-
tioned the generated range of ~xr values (−0.036 to 0.580) into 20
equally sized utility windows (resulting in a width of 0.031 each).
We then quantified the number of times that a trait was repre-
sented in each window (Dataset S1 and SI Appendix, Fig. S4) and
visualized the proportional composition of traits in each window
using a stacked bar chart (Fig. 2). We found that dental trait
combinations falling into the highest ~xr utility window (0.549 to
0.580) predominantly comprise the following six traits, at a fre-
quency of >90% each: mesial ridge (UC), distal accessory ridge
(UC), protostylid (LM1), lingual cusp number (LP2), cusp 6
(LM1), and cusp 7 (LM1). Dental trait combinations in the
lowest ~xr utility window (−0.036 to −0.005) comprise the fol-
lowing eight traits: cusp number (LM2), tuberculum dentale
(UI2), Carabelli trait (UM1), root number (LC), root number
(LM2), Tomes’ root (LP1), root number (UM2), and hypocone
(UM2). Overall, the utility estimate ~xr of individual traits is a
general indication of its effect on trait combination, where high-
utility traits appear more frequently in high-utility combinations
and vice versa (SI Appendix, Table S4).
To find dental trait combinations that performed best, we first

searched for the top-performing trait combination that achieved
the highest ~xr utility estimate (ntraits = 19; ~xr = 0.580; 95% r range =
0.293 to 0.758; P = 0.001). We then compared the distribution of r
values of the top-performing trait combination to the distribution
of r values of all other 134,217,699 trait combinations. In total, we
found a set of 267 combinations that all performed equally well in
capturing maximum amounts of neutral genomic variation
(Dataset S2). These 267 combinations consist of trait batteries
ranging from 14 to 20 traits and always comprise the following five
traits: mesial ridge (UC), distal accessory ridge (UC), protostylid
(LM1), lingual cusp number (LP2), and cusp 6 (LM1).
Fig. 3 highlights the superior utility of the top-performing trait

combination (Dataset S2; ntraits = 19; ~xr = 0.580; 95% r range =
0.293 to 0.758; P = 0.001) in comparison to the full trait battery
(ntraits = 27; ~xr = 0.428; 95% r range = 0.146 to 0.688; P = 0.001).
All plots convey how the 19-trait combination captures neutral
genomic affinities across populations better than the full 27-trait
battery, both in the superimposition of DG on DP in Procrustes
ordination space (Fig. 3A versus Fig. 3C) and in yielding lower
residual values in the DG−DP regression (Fig. 3B versus Fig. 3D).
Notably, the Procrustes plot based on the 19-traits combination
clearly shows major continental clusters of populations (Fig. 3A),
in comparison to the full 27-trait battery (Fig. 3C).
Finally, in order to explore whether phenotypic inferences

about neutral genetic variation based on many dental traits are
more useful than those based on only a few traits, we plotted the
distribution of ~xr and associated P values resulting from trait
batteries of different sizes (from single traits to the full 27-trait
battery) using violin plots (Fig. 4). On average, increasing the
number of traits leads to a logarithmic increase in median ~xr
values within a trait battery size class until ~xr approximates a
plateau value of 0.428 (Fig. 4A). At the same time, increasing the
number of traits reduces the variance of ~xr values within a trait
battery size class. Nevertheless, the highest ~xr utility estimates
were achieved by using a rather limited number of traits, ranging
from 14 to 20 traits (Dataset S2), indicated by a red box in
Fig. 4A. On average, increasing the number of traits also leads to
a logarithmic decrease in median P values within a trait battery
size class, and trait combinations comprising >15 traits (no
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matter which traits of the 27 traits are chosen) are always sig-
nificant at α = 0.05 (Fig. 4B).

Discussion
Here, we assessed the utility of different ASUDAS dental traits
and trait combinations in reflecting global patterns of modern
human neutral genetic variation. We did so by developing an
exhaustive search algorithm that systematically tested all possible
combinations of dental traits while accounting for stochastic
variation inherent to a neutral model of evolution, drawing on
the largest dental morphological and microsatellite genomic
datasets currently available. Our results clearly show that not all
dental traits and trait combinations are equally well-suited for
inferring neutral genetic affinities. They highlight that pheno-
typic inferences about neutral genetic variation are better when
based on trait combinations rather than individual traits. Im-
portantly, we were able to isolate a set of 267 highly diagnostic
trait combinations that preserve neutral genetic signals best
(Dataset S2). These trait combinations always comprise the
following five traits: mesial ridge (UC), distal accessory ridge
(UC), protostylid (LM1), lingual cusp number (LP2), and cusp 6

(LM1). The combinatorial power of these traits can be explained
by the fact that together they reflect major components of phe-
notypic structure at a global level. Whereas mesial ridge (UC)
and distal accessory ridge (UC) partition global dental diversity
into African and non-African components, lingual cusp number
(LP2), protostylid (LM1), and cusp 6 (LM1) differentiate East
Asians and Native Americans from other populations (15).
These geographical patterns are consistent with observations
from genomic structure at microsatellite loci, where population
clusters are anchored by populations from Africa and America as
a result of high diversity in the former and low diversity in the
latter (19, 33, 35, 36). The addition of other dental traits serves
to capture more subtle variation at lower geographic scales. We
propose that any of the 267 trait combinations in Dataset S2
should be prioritized in future research, as they allow for more
accurate inferences about global human population history when
using dental morphology as a proxy for neutral DNA.
In contrast, we found several dental traits that were compar-

atively less informative about neutral genetic variation, most
notably traits with near-zero ~xr utility estimates (Fig. 1) and traits
that were never represented in trait combinations falling into the

Fig. 1. Dental nonmetric traits in the ASUDAS and their estimated utility in reflecting human neutral genetic variation. Trait utility is calculated as correlation
(r) between neutral genetic and dental phenotypic distances across modern human populations, with 1,000 loci-resampled iterations providing a distribution
of r values to account for stochastic variation inherent to a neutral model of evolution (Materials and Methods). Dots display the median utility estimate (~xr).
Bars indicate 95% of the distribution of r values around ~xr. Grayscale of dots indicate P values for ~xr under the null hypothesis of no association between
genetic and phenotypic variation, calculated as the proportion of r values from permuted data that are equally high or higher than ~xr obtained from the
observed data (Materials and Methods). None of the ~xr utility estimates is statistically significant at α = 0.05 (see grayscale legend on the Right). Traits are
shown in descending order of ~xr. Anatomical trait descriptions are provided in ref. 14. Abbreviations in brackets denote key tooth scored: C, canine; I, incisor;
L, lower mandibular dentition; M, molar; P, premolar; U, upper maxillary dentition; Number, tooth positioning. Tooth figures schematically display trait
expressions dichotomized into trait absence (−) and trait presence (+). The box in the Lower Right corner displays the location of traits within the dentition.
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highest ~xr utility window (Fig. 2 and SI Appendix, Fig. S4). We
reason that a large portion of the morphological variation in
these traits is most likely linked to nonneutral evolutionary fac-
tors, such as natural selection. This interpretation is consistent
with previous functional adaptation hypotheses relating shovel-
ing (UI1) to enhanced biting performance (37), Carabelli trait
(UM1) and cusp 5 (UM1) to improved chewing (38–40), and
root number (UM1) to better molar retention in populations
with high masticatory loading (41). Shoveling (UI1) and Car-
abelli trait (UM1) have also been found to be associated with
environmental factors, suggesting that they reflect adaptations to
selective pressures rather than being a result of genetic drift (20).
Shoveling (UI1), double-shoveling (UI1), and cusp number
(LM2) have been found to be associated with the ectodysplasin
A receptor gene (EDAR) (42–45), which is a functional genomic
region under positive selection (46). The high-utility mesial ridge
(UC) was found to be linked to EDAR as well (44), although the
association was only significant when tested in combination with
other traits and not when tested individually after Bonferroni
correction for multiple testing. Interestingly, EDAR has a range
of pleiotropic effects on ectodermally derived structures, such as
hair, mammary glands, and teeth (47). It is, therefore, likely that
some of the dental traits linked to this gene are not direct targets
of selection but rather “hitchhiking” when selection acts on other
phenotypes (43). We propose that other dental traits that were
comparatively less informative about neutral genetic variation in
our study could likewise be linked to functional genomic regions
under selection. Alternatively, dental traits that do not follow
neutral expectations could also be linked to hominin admixture.
For example, it has been suggested that the high prevalence of
root number (LM1) in modern Asian populations is the result of
Denisovan introgression into modern Homo sapiens (48, 49). In
sum, the inclusion of dental traits that do not follow neutral
expectations should be carefully reviewed or, better still, omitted

in future phenotypic analyses aimed at reconstructing neutral
genetic affinities in modern humans.
When we explored whether phenotypic inferences about

neutral genomic variation based on many dental traits are more
useful than those based on only a few traits (Fig. 4), we found
that a larger battery of traits leads to phenotypic inferences that
are, on average, increasingly congruent with neutral genomic
expectations, which confirms standard assumptions in dental
anthropological research (14, 15). However, we found that the
increase in ~xr is logarithmic and not linear, with a gradual tipping
point at which adding more traits only adds little new neutral
genetic information. We observe trait combinations providing
the highest ~xr utility estimates among trait battery sizes of 14 to
20 traits (see red box in Fig. 4A). Using trait batteries with >20
traits results in increasingly homogenous ~xr utility estimates with
increasing minima, but also in decreasing maxima. Thus, more
traits do not necessarily provide higher concordance with neutral
expectations, since combinations with more traits will likely
contain traits that are less informative about neutral genomic
variation. As a result, we expect that many previous studies
following the standard recommendation of using the maximum
number of traits available are biased by traits that have not dif-
ferentiated in a neutral fashion. Nevertheless, regardless of the ~xr
effect size, our significance test results indicate that using at least
16 of any of the ASUDAS traits will reliably capture neutral
genomic variation at α = 0.05 (see red line in Fig. 4B).
Our results have implications for a wide range of previous

bioarchaeological studies. For example, several studies have used
dental nonmetric traits to test competing out-of-Africa dispersal
models of modern humans during the Late Pleistocene, drawing
on the observation that within-population morphological di-
versity decreases with increasing geographic distance from Africa
(50, 51). These studies have supported models that are some-
times in conflict with other lines of evidence, including those applying
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the same study design to cranial morphology (52). This dis-
crepancy can be partly explained by the fact that the studies
using dental traits may not have captured sufficient neutral
genomic variation to allow for proper inference. Indeed, a
reevaluation of the ASUDAS traits employed by refs. 50 and
51 indicates that the trait combination captures significant
neutral genomic variation, but the strength of association is
rather weak (~xr = 0.278; 95% r range = −0.025 to 0.585; P =
0.010). Thus, previous inferences about out-of-Africa dis-
persal models based on dental morphology should be treated

with caution, and when possible, they should be reconsidered
using one of the 267 highest-utility trait combinations repor-
ted here (Dataset S2).
Our results also have direct implications for the field of fo-

rensic death investigations. For example, the latest version of the
rASUDAS program (2), a web-based application for estimating
the ancestry of an unknown individual based on its suite of crown
and root traits, utilizes a battery of 21 ASUDAS traits, following
the standard assumption that using more traits results in better
inferences on genetic affinities. Our results show that this
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Fig. 3. Comparison of one of the most useful dental nonmetric trait combinations found in this study (ntraits = 19; ~xr = 0.580; 95% r range = 0.293 to 0.758;
P = 0.001) versus the utility of the full trait battery (ntraits = 27; ~xr = 0.428; 95% r range = 0.146 to 0.688; P = 0.001). The ~xr utility is calculated as the correlation
between neutral genetic distances (DG) and dental phenotypic distances (DP) across modern human populations, while accounting for stochastic variation
inherent to a neutral model of evolution (Materials and Methods). For visualization, we used the full genomic loci dataset (nloci = 645). (A) Procrustes su-
perimposition plot maximizing similarity between DG and DP in a 2D multidimensional scaling (MDS) map, calculated for the 19-trait combination. Color-
coding of points denotes populations (see right-side legend). Points with no border are DG estimates. Point with a black border are DP estimates. Pairwise
population residuals between DG and DP are displayed by black dotted lines. (B) Regression plot of pairwise population relationships between DG and DP

displayed with a fitted linear regression line and estimated 95% confidence interval, calculated for the 19-trait combination. Color-coding of points denotes
population pairs. (C) Procrustes superimposition plot for the full 27-trait battery. (D) Regression plot for the full 27-trait battery.
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particular 21-trait combination is capturing neutral genomic
variation significantly, but only moderately well (~xr = 0.326; 95%
r range = 0.084 to 0.585; P = 0.001). This could partly explain the
suboptimal rASUDAS ancestry classification accuracy ranging
from 51.8 to 72.2% (2). We anticipate that using the highest-
utility dental trait combinations (Dataset S2) would substantially
increase classification accuracy, given the fact that the top-
performing 19-trait combination (~xr = 0.580; 95% r range =
0.293 to 0.758; P = 0.001) successfully separates populations into
broad geographical clusters (Fig. 3A). However, traits found to
be of high utility in our study, such as mesial ridge (UC) and
distal accessory ridge (UC), are not implemented in the current
rASUDAS application, highlighting the necessity to further de-
velop this important forensic tool. Nevertheless, we note that
dental traits associated with functional genomic regions under
selection (e.g., EDAR related traits such as shoveling) are still
useful for forensic ancestry classification, given that they are
found at extreme high or extreme low frequencies in different
populations across the globe (15). Further research should clarify
which dental traits perform best for discriminating between dif-
ferent ancestry groups, especially when investigations are per-
formed at different geographic scales.
Following a long research tradition in biological anthropology

that seeks to identify skeletal regions that preserve maximum
amounts of neutral genomic signals (24–28, 53), our study adds
an important and long overdue contribution to this domain—
that of nonmetric traits of the dentition. The quantified degree

of congruence between neutral genomic variation and dental
trait combinations of highest utility reported here (e.g., ntraits =
19; ~xr = 0.580; 95% r range = 0.293 to 0.758; P = 0.001) is
comparable to the highest congruence for different anatomical
regions of the cranium (r = 0.563 to 0.665; P < 0.001) found by a
study using a methodological setup similar to ours (25). Thus,
dental and cranial morphology appear to be equally well suited
for inferring neutral genetic variation. However, we caution that
previous studies on the association of cranial and genomic var-
iation are not directly comparable to ours since none of the
previous studies accounted for stochastic variation inherent to a
neutral model of evolution. Moreover, different populations
have been sampled, and different methodological approaches for
quantifying morphology have been employed. Importantly,
whereas previous investigations on cranial bones used pre-
determined anatomical regions (24–27), the study design used
here tested all possible combinations of traits, something that has
not yet been attempted for cranial data. While future work will
serve to further clarify the combinatorial utility of cranial re-
gions, the better state of preservation of teeth and their higher
recovery in forensic, archaeological, and paleontological contexts
ultimately provides the advantage of larger sample sizes and
more robust statistical analyses.
We note that the ~xr utility estimates reported here are biased

toward not finding significant associations between neutral ge-
netic and dental morphological variation. First, we compared
matched but unpaired datasets, with dental samples coming from
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Fig. 4. Estimated utility for 27 dental nonmetric traits and 134,217,700 possible trait combinations apportioned into trait batteries of different size (from 1 to
27 traits). (A) Violin plots showing the distribution of ~xr utility estimates per trait battery size, where ~xr is calculated as the correlation between neutral genetic
and dental phenotypic distances across modern human populations, while accounting for stochastic variation inherent to a neutral model of evolution
(Materials and Methods). Box plots are superimposed to show median values and interquartile ranges. The red dotted box indicates the highest ~xr utility
estimates found in our study, achieved by trait combinations of batteries ranging from 14 to 20 traits. (B) Violin plots showing the distribution of (square root
transformed) P values associated with ~xr utility estimates per trait battery size under the null hypothesis of no association between genetic and phenotypic
variation, where p is calculated as the proportion of correlations from permuted data that are equally high or higher than the utility estimator ~xr obtained
from the observed data (Materials and Methods). The red dotted line represents the conventional α level of 0.05.
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different individuals than those sampled for genomic loci. Al-
though it is a well-established procedure to compare unpaired
data at a global scale (16, 24–28), any comparison of genetic and
morphological affinities in unpaired samples tends to reduce the
magnitude of their association given that between-population
variation is low compared to within-population variation (54).
Second, it is possible that the dichotomized dental trait data
employed in this study are not capturing adequate morphological
variation. Trait dichotomization is a well-established approach
with the advantage of minimizing observer error (14, 15); how-
ever, it also reduces information about variation in trait ex-
pressivity and may skew phenotypic distance estimates (55).
Third, we used a phenotypic distance statistic for measuring
between-population variation that is assuming complete in-
dependence among traits. Although it has been repeatedly
shown that correlations among dental traits recorded on key
teeth are low (8, 9, 14, 15, 44), even modest trait correlations
may lead to overrepresented variation from traits that co-occur.
Given the limitations of our study, the reported ~xr utility esti-
mates must be considered as minimum and not as exact esti-
mates of the strength of correlation between neutral genetic and
dental morphological variation. Nevertheless, because it is likely
that the above-mentioned limitations apply to all generated ~xr
utility estimates in a similar manner, they may not bias our
conclusions since we are interested in the relative utility of the
different dental trait combinations to each other.
We anticipate that the results of our study will serve as an

important reference for a wide range of future dental morpho-
logical investigations, allowing researchers to select dental trait
combinations that most reliably reflect neutral genetic signatures
in modern humans. For this, we advise relying on trait combi-
nations with highest ~xr utility estimates (Dataset S2), or, alter-
natively, to remove traits with near-zero ~xr utility estimates
(Fig. 1). The generated table of ~xr utility estimates for all possible
134,217,700 trait combinations (34) can also be used to validate
the performance of a particular trait combination employed in
previous studies. Finally, yet importantly, we emphasize that
researchers should continue to collect and report on the full
battery of dental morphological traits. Continuing to collect as
many traits as possible is important because the ASUDAS is
continuously growing as new traits are proposed for inclusion
(15), including those that capture dental variation across homi-
nin taxa (10, 12). We caution that because our results reflect
genomic and phenotypic variation in recent modern humans,
further work is necessary to apply them to the fossil record.
Nevertheless, future research pairing ancient genomic and phe-
notypic data has great potential to further fine-tune our results at
deeper time depths using the conceptual template we have laid
out here, paving the way for testing new dental trait combina-
tions useful in reconstructing human evolutionary history. More
broadly, we propose that dental traits that were comparatively
less informative about neutral genetic variation in our study
could be linked to functional genomic regions, and we recom-
mend that future genome-wide association studies should further
investigate these potential dental trait candidates under selec-
tion, leading to exciting new research directions.

Materials and Methods
Matching Population Samples. Materials for this study comprise two different
types of data: 1) dental nonmetric traits and 2) single-tandem repeat (STR)
alleles of microsatellite loci across the autosomal genome. All data were
taken from existing databases (15, 33). We matched datasets for 20 globally
distributed modern human populations for which both morphological and
genetic data were available (SI Appendix, Table S1 and Fig. S1). Populations
were chosen for inclusion in this study based on three criteria: 1) availability
of dental nonmetric trait data; 2) availability of STR allele data; and 3)
sample antiquity such that none of the samples consists of exclusively ar-
chaeological material dated older than 2,000 y, so as to control for temporal
bias. In instances where exact population matches could not be achieved, a

geographically proximate population with ethnolinguistic affinities was
selected.

Dental Nonmetric Trait Data. The dental nonmetric trait data were obtained
from the hitherto largest available global database comprising observations
of 27 dental traits scored for more than 11,000 individuals from several
populations of modern humans (15). Most of the individuals come from
archaeological and historical skeletal series dated to a few hundred years
old. The majority of the samples were collected by C. G. Turner II and were
later enlarged by work of G. R. Scott, J. D. Irish, and D. E. Hawkey. All
workers used the ASUDAS (13) to collect dental trait observations. The
ASUDAS comprises a reference set of dental casts illustrating expression
levels for various traits alongside specific instructions that ensure a stan-
dardized scoring procedure, which minimizes intraobserver and in-
terobserver error. Scoring followed the individual count method (56), where
a trait was counted only once per dentition, regardless of whether or not the
trait appeared bilaterally. In cases where a trait was expressed asymmetri-
cally, the side with the highest expression level was scored. Dental trait
expression scores were collapsed into simplified binary dichotomies of ab-
sence or presence in order to calculate trait frequencies per population.
Dichotomization is based on established breakpoints that best represent
easily recognizable and replicable points along the trait expression scale (SI
Appendix, Table S3). While dichotomization reduces information about
variation in trait expressivity, it has the advantage of further minimizing
observer error (14, 15). In addition, trait frequencies are expected to be
correlated with the level of trait expressivity within a population under a
threshold model of quasicontinuous variation (57). Dental traits listed in the
ASUDAS have little or no sexual dimorphism (14, 15); therefore, it is a
standard procedure to pool sexes (4, 6, 8, 12). Population comparisons based
on ASUDAS dental traits typically focus on key teeth (usually the most mesial
member of a tooth district) because these are considered the most stable
members in terms of development and evolution (15) and are largely in-
dependent from each other (8, 9, 14, 15, 44). Dental trait frequencies per
population are calculated as the average of several trait frequencies esti-
mated for various groups in each population. The average trait frequencies
of the 20 populations used for analysis are based on a total of 185 groups,
with population representation varying from 3 to 25 groups. Ranges of
group trait frequencies for each population are provided in ref. 15. Average
trait frequencies for the 20 populations used for analysis are provided in
Dataset S3.

STR Allele Data. The STR allele data were obtained from a global dataset
compiling modern human microsatellite genotypes at 645 common loci (33).
The dataset comprises several published studies, including the global sam-
ples of the Human Genome Diversity Project deposited at Centre d’Etude du
Polymorphisme Humain (HGDP-CEPH Human Genome Diversity Cell Line
Panel; ref. 58), as well as several regional population studies. Data filtering
of the different datasets consisted of removing microsatellites with >10%
missing data, individuals with >27.5% missing data, data duplicates, and
first- and second-degree relative pairs (33). Data from regional populations
were merged with the global HGDP-CEPH dataset, aligning allele sizes to the
latter. Matching this dataset with the 20 dental populations resulted in more
than 4,000 individuals from 213 groups (SI Appendix, Table S1 and Fig. S1).
For each population, we extracted mean allele sizes (Dataset S4).

Testing the Utility of Different Dental Trait Combinations. We performed an
exhaustive search to systematically test the utility of different ASUDAS dental
traits and trait combinations for phenotypic analysis. With the ASUDAS
dataset used in our analysis, we tested 27 single dental traits and all
134,217,700 dental trait combinations possible. The utility of a given trait or
trait combination was assessed by estimating dental phenotypic distance
values (DP) between 20 worldwide modern human populations, and by
comparing them to neutral genomic distance values (DG) among the same,
or closely matched, populations.

For each dental trait or trait combination, pairwise DP values among all
sampled populations were calculated using the Euclidean squared (D2) dis-
tance formula as follows:

D2
ij = ∑n

k=1
(zik − zjk)2,

where D2
ij is the Euclidean squared distance between the two populations i

and j; zik and zjk are threshold values of the dental trait k for populations i
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and j, respectively; and n is the number of analyzed dental traits. The
threshold values zik and zjk were estimated using a probit function as zik =
probit(pik) and zjk = probit(pjk), where p is the percentage of dental trait k
present in populations i and j, respectively. Under a threshold model of
quasicontinuous variation, zik and zjk are analogous to means because binary
dichotomies employed for dental nonmetric traits code an underlying nor-
mally distributed continuous variable with unit SD (59).

Pairwise DG values among all sampled populations were calculated using
the delta-mu squared (δμ2) distance equation (60) as follows:

δμ2ij = ∑n
k=1

μik − μjk( )2( )/n,

where δμ2ij is the delta-mu squared distance between two populations i and j;
μik and μjk are the means of allele sizes in locus k for populations i and j,
respectively; and n is the number of analyzed loci. Both distance statistics, DG

and DP, are comparable to each other because both measure squared pair-
wise differences in mean values among populations and their distance val-
ues are expected to increase with time in diverging populations (61).

The congruence between DP and DG was assessed by linear regression of
the off-diagonal values in the two distance matrices using the Pearson
product-moment correlation coefficient (r). An r value close to 1 indicates
that a trait or trait combination reliably reflects neutral genomic patterns of
variation, whereas an r value close to 0 indicates that a trait or trait com-
bination is less congruent with neutral expectations.

To account for stochastic variation inherent to a neutral model of evo-
lution, we calculated r for a given dental trait or trait combination 1,000
times, each time comparing the DP matrix to different DG matrices arrived at
by resampling the microsatellite loci data (23, 62). In each resampling iter-
ation, we randomly subsampled the same number of loci as there are dental
traits in a given trait combination. This sampling strategy is consistent with
population and quantitative genetics theory, where a completely heritable,
additive, and selectively neutral phenotypic trait is approximately as in-
formative about population differentiation as a single neutral genomic lo-
cus, regardless of how many loci influence the phenotypic trait (63, 64). We
then reported the median r value from the resulting distribution of r values
as a point estimate and as the utility estimator for a given trait or trait
combination (~xr). To measure the spread of r values around ~xr, we con-
structed an interpercentile range from the 2.5th to the 97.5th percentile
accounting for 95% of the distribution of r values.

To assess statistical significance of the ~xr utility estimate, we first estimated
a null distribution of r values by comparing 1,000 permuted DP matrices
(where rows and columns were randomly rearranged) to loci-resampled DG

matrices. We then calculated the P value as the proportion of r values from
the null distribution that are equally high or higher than the utility esti-
mator ~xr obtained from the observed data. This permutation test permitted
us to assess how frequently the ~xr utility estimate from the observed data
were produced by chance alone. To account for multiple testing, we ran a
Benjamini–Hochberg P value adjustment that controls for the false-discovery
rate at 5%, which is the expected proportion of false discoveries among the
rejected null hypotheses of no association (65).

Visualizing the Utility of Dental Traits and Trait Combinations. To visualize the
differential utility of the 27 individual dental traits for inferring neutral
genetic variation, we plotted ~xr utility estimates for each trait using a
scatterplot with error bars displaying interpercentile ranges accounting
for 95% of the distribution of r values (Fig. 1). To survey the differential
utility of dental trait combinations, we plotted the proportional contri-
bution of traits involved in trait combinations yielding different ~xr utility
estimates. For this, we first apportioned the generated range of ~xr values
(−0.036 to 0.580) into 20 equally sized utility windows (resulting in a width
of 0.031 each). We then quantified the number of times that a trait was
represented in each window (Dataset S1 and SI Appendix, Fig. S4) and
visualized the proportional contribution of traits in each window using a
stacked bar chart (Fig. 2).

Finding the Most Useful Dental Trait Combinations. To find dental trait com-
binations that are the most useful for inferring neutral genetic variation, we
first selected the top-performing trait combination achieving the highest ~xr
utility estimate in our study (ntraits = 19; ~xr = 0.580; 95% r range = 0.293 to
0.758; P = 0.001). We then compared the distribution of r values of this top-
performing trait combination to the distribution of r values of all other
134,217,699 trait combinations using multiple Mann–Whitney U tests with
a Benjamini–Hochberg P value adjustment. This allowed us to extract a set

of 267 trait combinations whose r value distributions were not signifi-
cantly different from the r value distributions of the top-performing trait
combination (Dataset S2). We considered these 267 dental trait combi-
nations as all equally useful for inferring maximum amounts of neutral
genetic variation.

Visualizing the Utility of the Top-Performing Dental Trait Combination versus
the Utility of the Full Trait Battery. We highlight the superior utility of one of
the dental trait combinations listed in Dataset S2 (the top-performing
combination with the highest ~xr utility estimate: ntraits = 19; ~xr = 0.580;
95% r range = 0.293 to 0.758; P = 0.001) in comparison to the full trait
battery (ntraits = 27; ~xr = 0.428; 95% r range = 0.146 to 0.688; P = 0.001). For
simplicity, we used the full 645 genetic loci dataset for comparison. For each
of the two different trait combinations, we visualized the congruence be-
tween dental phenotypic (DP) and neutral genetic (DG) distances among
sampled populations using two complementary techniques: regression plots
and Procrustes superimposition plots (Fig. 3). For the regression plots, we
visualized the pairwise relationship between DP and DG in a scatterplot with
a fitted linear regression line and an estimated 95% confidence interval. For
the Procrustes superimposition plots, we first subjected the DP and DG dis-
tance matrices to nonmetric multidimensional scaling (MDS) in order to
generate a two-dimensional (2D) representation of the relative affinities
among populations. The stress level for the DG matrix was 0.066. The stress
levels for the two different DP matrices were 0.088 and 0.063, respectively.
These low stress levels indicate that two dimensions capture the overall
among-population variation of the different datasets well and are below
the acceptable threshold of 0.15 (66). Thereafter, the lower-dimensional
MDS ordination datasets were subjected to Procrustes superimposition to
scale and rotate the two different DP matrices to maximum similarity with
the target DG matrix by minimizing the overall sum of squared differences
among populations. For each of the two different dental trait combinations,
the two Procrustes superimposed DP and DG distance matrices were then
visualized in a single MDS plot.

Visualizing the Utility of Different Numbers of Dental Traits. To explore
whether phenotypic inferences about neutral genetic variation based on
many dental traits are more useful than those based on only a few traits, we
plotted the distribution of ~xr and associated P values resulting from trait
batteries of different size. For this, we first portioned the generated range
of ~xr and P values based on the number of traits employed in each combi-
nation (from a single trait to the combined total of 27 traits). We then
plotted the 27 resulting distributions of ~xr and P values using violin plots
(Fig. 4).

We additionally assessed whether ~xr utility estimates for the 27 dental
traits (SI Appendix, Table S2) were correlated with either average fre-
quency of a trait across populations (Dataset S3) or with the range of
trait frequencies across populations (Dataset S3). For both tests, we used
linear regressions utilizing the Pearson product-moment correlation co-
efficient r, and we estimated P values under the null hypothesis of no
association (SI Appendix, Figs. S2 and S3). We also explored the effect of
individual traits on trait combinations by determining the correlation
between ~xr utility estimates for individual traits (SI Appendix, Table S2)
and their frequency within different ~xr utility windows (Dataset S1) using
Pearson’s r and respective significance test as described above (SI Ap-
pendix, Table S4)

All analyses were performed in R, version 3.6.1 (67). The raw data and R
script for the exhaustive search algorithm are publicly available on Zenodo
(34) at https://zenodo.org/record/3713179. The Benjamini–Hochberg correc-
tion was calculated using the p.adjust function (method = “BH”) in the R
package stats, version 3.6.1 (67). The R package vegan, version 2.5.2 (68), was
used to conduct the Procrustes analyses and MDS calculations, using the
procrustes and metaMDS functions, respectively. All graphics were created
using the R package ggplot2, version 3.0.0 (69).
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